
spiderman Documentation
Release 0.2.2

Tom Louden

Oct 18, 2018





Contents

1 Installation 3
1.1 pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 From source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Quickstart 5

3 Plotting 7
3.1 Visualising the planet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Generating a simple spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Brightness maps 19
4.1 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Zhang and Showman 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Offset hotspot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Two sided planet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Stellar models 39
5.1 Blackbody model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 PHOENIX model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Custom stellar spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Precalculating grids of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Instrument response 43

7 Acknowledgements 45

8 Release Notes 47

9 0.3.1 (2016/08/25) 49

10 0.2.2 (2016/08/10) 51

i



ii



spiderman Documentation, Release 0.2.2

Contents:

Contents 1



spiderman Documentation, Release 0.2.2

2 Contents



CHAPTER 1

Installation

1.1 pip

The fastest way to get the latest stable version of spiderman up and running is through pip:

$ pip install spiderman-package

1.2 From source

To get the most up to date version of spider install directly from source, though stability is not guarenteed. The
development version can be found on GitHub.

Installing from GitHub is straightforward, simply type

$ git clone https://github.com/tomlouden/SPIDERMAN

To ‘clone’ the repository, then cd into the folder and install using the setup script:

$ cd SPIDERMAN
$ sudo python setup.py install

And that’s it! (Note that you’ll need to cd out of the source directory before you can import spiderman.)

1.3 Tests

An Ipython notebook is included with a few examples, I recommend running it to test everything is working correctly.
(built in test functions coming soon)

3

https://github.com/tomlouden/spiderman


spiderman Documentation, Release 0.2.2

4 Chapter 1. Installation



CHAPTER 2

Quickstart

Making a lightcurve — This is likely the basic task that you need SPIDERMAN to perform, to, for example, form the
basis for a likelihood function being fed into an mcmc. Here is how to return a simulated lightcurve from SPIDER-
MAN, the fast way.

First, import spiderman into the namespace:

import spiderman as sp

Now, it is necesarry to generate a parameter object, this will be the main way of interacting with the code. Before
doing so, you must specify which brightness model (link to brightness model page) you wish to use. In this example
we will use the analytical formula from Zhang & Showman 2016, but many other options are availible (If you have a
brightness model that is not represented, please contact me, and I will include it in the next release of the package).

spider_params = sp.ModelParams(brightness_model="zhang")

Now that the parameter object has been created, we can define the parameters as so:

spider_params.n_layers= 5

This parameter refers to the number of layers in the 2d “web” used to define the integration grid. 5 is typically
acceptable for most availible data qualities. Next we will define the system parameters, using values suitable for
WASP-43b

spider_params.t0= 200 # Central time of PRIMARY transit [days]
spider_params.per= 0.81347753 # Period [days]
spider_params.a_abs= 0.01526 # The absolute value of the semi-major axis [AU]
spider_params.inc= 82.33 # Inclination [degrees]
spider_params.ecc= 0.0 # Eccentricity
spider_params.w= 90 # Argument of periastron
spider_params.rp= 0.1594 # Planet to star radius ratio
spider_params.a= 4.855 # Semi-major axis scaled by stellar radius
spider_params.p_u1= 0 # Planetary limb darkening parameter
spider_params.p_u2= 0 # Planetary limb darkening parameter

5



spiderman Documentation, Release 0.2.2

Note: these definitions are compatible with Batman (Kreidberg et al 2015)

Now set the parameters specific to the brightness model that we defined earlier:

spider_params.xi= 0.3 # Ratio of radiative to advective timescale
spider_params.T_n= 1128 # Temperature of nightside
spider_params.delta_T= 942 # Day-night temperature contrast
spider_params.T_s = 4500 # Temperature of the star

Since this uses model spectra, it is necessary to specify the bandpass with these parameters:

spider_params.l1 = 1.1e-6 # The starting wavelength in meters
spider_params.l2 = 1.7e-6 # The ending wavelength in meters

Warning: SPIDERMAN calculates ratios in flux density assuming a response function that is uniform in en-
ergy flux. If you want a response uniform in photon counts you must define a instrument response function (see
Instrument Response section).

Now, define the times you wish the model to be evaluated at, let’s do a single full orbit:

t= spider_params.t0 + np.linspace(0, + spider_params.per,100)

Finally, a lightcurve can be generated simply by using the “lightcurve” method:

lc = spider_params.lightcurve(t)
plt.plot(t,lc)

Fig. 1: The resulting lightcurve

Warning: SPIDERMAN currently only produces secondary eclipses and phase-curves - the primary eclipse will
not be modelled! To model the primary eclipse an additional code, such as BATMAN (Kreidberg et al 2015) will
be required.

It’s that simple!

6 Chapter 2. Quickstart



CHAPTER 3

Plotting

3.1 Visualising the planet

Spiderman provides a few different ways to visualise the resulting brightness distribution on the planet, below are
some examples, after the planet has been specified with “spider_params”

The “plot_planet” method outputs the visible face of the planet at the specified time (t), using the same code that is
used internally for calculating the model output. This can be a useful sanity check of what the model is doing.

By default the plot will be in a standard white theme suitable for inclusion in papers or printouts, alternatively a snazzy
black theme more suited to powerpoint presentations can be selected for all spiderman plots by setting the “theme”
keyword to black:

Note that to save figures like this, you will have to let matplotlib know that you want to to output the figure with a
black background, e.g.

For brightness temperature based models like the Zhang model, you can also plot in temperature by setting “use_temp”
to true

To see the system in context, you can also output a “system plot” which shows the projected position of the planet to
scale with the star. Again, this plot is constructed from the same code used internally for model calculation, so is a
good way to check what’s going on. Both plot_planet and plot_system can accept a phase instead of a time when the
use_phase keyword is set to True

“Quad_plot” gives you a quick way to see the projected appearence of the planet at primary and secondary eclipses,
and at phase 0.25 and 0.75. It has the same theming options and is able to plot either flux or temperature.

Sometimes you just want a straightforward global map - in spiderman this is generated by the “square_plot” command.
This function does not use the typical spiderman segment scheme, and instead evaluates the brightness function on
an evenly spaced grid in longitude and latitude. The number of grid points in the latitude and longitude direction are
specified by nla and nlo keywords, respectively.

end

7



spiderman Documentation, Release 0.2.2

8 Chapter 3. Plotting



spiderman Documentation, Release 0.2.2

3.1. Visualising the planet 9



spiderman Documentation, Release 0.2.2

10 Chapter 3. Plotting



spiderman Documentation, Release 0.2.2

3.1. Visualising the planet 11



spiderman Documentation, Release 0.2.2

12 Chapter 3. Plotting



spiderman Documentation, Release 0.2.2

3.1. Visualising the planet 13



spiderman Documentation, Release 0.2.2

3.2 Generating a simple spectrum

Sometimes you don’t want to bother with running a full orbital model, and just want a quick estimate of the eclipse
depth of system. Spiderman has a couple of techniques to allow you to do this.

If all you want is the eclipsed depth, you can use the “eclipse_depth” method, like so:

import spiderman as sp
import numpy as np
import matplotlib.pyplot as plt

spider_params = sp.ModelParams(brightness_model='zhang')
spider_params.n_layers = 5

for this example we’ll use a Zhang and Showman type model with 5 layers, next the relevent model parameters are
entered -

spider_params.l1 = 1.1e-6 # The starting wavelength in meters
spider_params.l2 = 1.7e-6 # The ending wavelength in meters

spider_params.T_s = 4520
spider_params.rp = 0.159692

spider_params.xi = 0.1
spider_params.T_n = 1000
spider_params.delta_T = 1000

Note that if all you want is a simple eclipse depth, there’s no need to enter the orbital parameters. Spiderman will as-
sume a circular orbit and an inclination of 90 degrees unless you tell it otherwise. Now, you can call the eclipse_depth:

d = spider_params.eclipse_depth()
print(d)
>> 0.00045781826310942186

This method can be used to quickly generate an occultation spectrum of the depth as a function of wavelength, like so:

min_wvl = 1.1e-6
max_wvl = 1.7e-6
steps = 10
wvl_step = (max_wvl-min_wvl)/steps

for i in range(0,steps-1):
spider_params.l1 = min_wvl + wvl_step*i
spider_params.l2 = min_wvl + wvl_step*(i+1)

mid_wvl = min_wvl + wvl_step*(i+0.5)
d = spider_params.eclipse_depth()
plt.plot(mid_wvl*1e6,d*1000,'ro')

plt.xlabel('Wavelength (microns)')
plt.ylabel('Eclipse depth (ppt)')

Some caution must be used with this method, as it only returns the blocked light relative to the stellar brightness at the
specified phase - so for an example, if you were to specify a grazing transit you would not recieve the total flux of the
dayside.

If you do want the total flux of the planet from a specific phase, you can instead use the “phase_brightness” method.
Using this method you can calulate the emission spectrum of the planet in physical units at the phase of your choosing,

14 Chapter 3. Plotting



spiderman Documentation, Release 0.2.2

3.2. Generating a simple spectrum 15



spiderman Documentation, Release 0.2.2

it is called in a similar way to eclipse_depth, but has an optional phase argument which can accept either a single phase
value or a list. You can provide a planet radius to recieve the total band luminosity of the visible hemisphere in Watts,
if this is not given then an average surface intensity will be returned.

mid_wvls = []
p1s = []
p2s = []
p3s = []
p4s = []

for i in range(0,steps-1):
spider_params.l1 = min_wvl + wvl_step*i
spider_params.l2 = min_wvl + wvl_step*(i+1)

mid_wvl = min_wvl + wvl_step*(i+0.5)
mid_wvls += [mid_wvl*1e6]

p1, p2, p3, p4 = spider_params.phase_brightness([0.0,0.25,0.5,0.75],planet_
→˓radius=6.9911e7)

p1s += [p1]
p2s += [p2]
p3s += [p3]
p4s += [p4]

plt.plot(mid_wvls,p1s,'ro',label = '0')
plt.plot(mid_wvls,p2s,'bo',label = '0.25')
plt.plot(mid_wvls,p3s,'go',label = '0.5')
plt.plot(mid_wvls,p4s,'yo',label = '0.75')

plt.legend(title='Phase')
plt.xlabel('Wavelength (microns)')
plt.ylabel('Luminosity (W / sr)')

Finally, you can use the total_luminosity method to return the total band luminosity of the planet in the model in Watts,
a planet radius in meters is required:

spider_params.l1 = 1.1e-6
spider_params.l2 = 1.7e-6
lum = spider_params.total_luminosity(10*6.9911e7)
print(lum)
>> 7.03802421799e+20

end.

16 Chapter 3. Plotting



spiderman Documentation, Release 0.2.2

3.2. Generating a simple spectrum 17



spiderman Documentation, Release 0.2.2

18 Chapter 3. Plotting



CHAPTER 4

Brightness maps

4.1 Spherical Harmonics

A spherical harmonics model, the user can specify the co-eficients for as many terms as desired. Spherical harmonics
models are useful, since they do not make any physical assumptions about the distribution you wish to recover. It can
be useful to check the results of a physically motivated model against the results of a spherical harmonic fit. Called
with “spherical”.

main parameters:

degree The maximum degree of Harmonic you want to consider (You won’t typically want more than 2)

la0 Offset of the center of the co-ordinte centre from the substellar point in the latitude direction (unit:
Degrees)

lo0 Offset of the center of the co-ordinte centre from the substellar point in the longitude direction (unit:
Degrees)

sph A list of the co-efficients for the harmonic terms, there must be the appropriate number (degree
squared), and arranged in the correct order: [l0, l1 m-1, l1 m0, l1 m1, l2 m-2, l2 m-1, l2 m0, l2 m1,
l2 m2. . . .. etc]. These parameters are scaled to be relative to the stellar flux, so will typically be of
order 1e-3 - 1e-4.

Warning: There is nothing implicit in this spherical harmonics implementation to prevent negative surface fluxes!
It is suggested that care is taken when specifying priors to prevent unphysical results.

An example square plot using a two degree spherical harmonic using the l0 m0 and l1 m1 terms only - this is a simple
dipole, and can represent a day/night side difference:

This time the hotspot is offset by adding the l1 m-1 term. (the same effect can also be achieved by changing the la0
and lo0 parameters, but never try to fit for both simultaneously, as it’s degenerate!):

Now, with a higher order term added, l2 m0, to concentrate flux towards the equator.

An example four phase plot with this distribution:

19



spiderman Documentation, Release 0.2.2

20 Chapter 4. Brightness maps



spiderman Documentation, Release 0.2.2

4.1. Spherical Harmonics 21



spiderman Documentation, Release 0.2.2

22 Chapter 4. Brightness maps



spiderman Documentation, Release 0.2.2

4.1. Spherical Harmonics 23



spiderman Documentation, Release 0.2.2

The resulting lightcurves for the three example distributions:

4.2 Zhang and Showman 2017

A temperature map based on the equations given in the appendix of Zhang and Showman 2017
(http://adsabs.harvard.edu/abs/2017ApJ. . . 836. . . 73Z) This semi-physical model well reproduces the main features
of hot Jupiter phase-curves - offset hotspots. Called with “zhang”

main parameters:

xi Ratio of radiative to advective timescale (unit: Unitless)

T_n Temperature of the nightside of the planet (unit: Kelvin)

delta_T Day-night temperature contrast (unit: Kelvin)

An example square plot:

An example four phase plot:

24 Chapter 4. Brightness maps

http://adsabs.harvard.edu/abs/2017ApJ...836...73Z


spiderman Documentation, Release 0.2.2

4.2. Zhang and Showman 2017 25



spiderman Documentation, Release 0.2.2

26 Chapter 4. Brightness maps



spiderman Documentation, Release 0.2.2

The resulting lightcurves for several parameter values

4.3 Offset hotspot

main parameters:

la0 Offset of the center of the hotspot in the latitude direction (unit: Degrees)

lo0 Offset of the center of the hotspot in the longitude direction (unit: Degrees)

size The radius of the hotspot in degrees, i.e., 90 means the hotspot covers a whole hemisphere. (unit:
degrees)

The hotspot can either be specified as “hotspot_b”, to directly specify the fractional brightness, in which case these
parameters are used:

spot_b The surface brightness of the hotspot as a fraction of the surface brightness of the star, typically
of order ~1e-4 for hot Jupiters (unitless)

4.3. Offset hotspot 27



spiderman Documentation, Release 0.2.2

p_b The surface brightness of the planet that is not in the hotspot as a fraction of the surface brightness of
the star. This value will depend strongly on the physics of heat transport in the planets atmosphere
and may be several orders of magnitude fainter than the spot (unitless)

Or as “hotspot_t” to specify in terms of brightness temperature, in which case the following parameters are used
instead. In this case the wavelength range to integrate over must be specified.

spot_T The surface brightness of the hotspot as a fraction of the surface brightness of the star, typically
of order ~1e-4 for hot Jupiters (unitless)

p_T The brightness temperature of the planet that is not in the hotspot as a fraction of the surface bright-
ness of the star. This value will depend strongly on the physics of heat transport in the planets
atmosphere and may be several orders of magnitude fainter than the spot (unitless)

Note: Because there is a sharp contrast in flux levels between spot and not spot regions, this brightness model can
have issues with quantisation, which produces unphysical “steps” in the lightcurve. This can be for the time being be
solved by including a numerical integration step in regions with sharp contrasts with the optional paramter “grid_size”

cont

grid_size This model has a sharp boundary, so can have quantization issues. Regions with sharp changes
in brightness are for now integrated numerically instead of analytically, this sets the number of grid
points to use in the integration along each direction, to the total number of additional function calls
will be this value squared. Setting this too high can significantly slow the code down, however if it
is too low fits may be numerically unstable. Use caution. This is a temporary fix and is intended to
be removed in a future version (default: 10)

An example square plot:

An example four phase plot:

The resulting lightcurves for several parameter values

4.4 Two sided planet

This is a simple model that only assumes that the day-side of the planet has a different flux or temperature to the night
side. can be called as “two temperature” to specify with brightness temperature, or “two brightness” to secify by flux

main parameters:

The hotspot can either be specified as “hotspot_b”, to directly specify the fractional brightness, in which case these
parameters are used:

pb_d The surface brightness of the dayside as a fraction of the surface brightness of the star, typically of
order ~1e-4 for hot Jupiters (unitless)

pb_n The surface brightness of the planet nightside as a fraction of the surface brightness of the star.
This value will depend strongly on the physics of heat transport in the planets atmosphere and may
be several orders of magnitude fainter than the spot (unitless)

Or as “hotspot_t” to specify in terms of brightness temperature, in which case the following parameters are used
instead. In this case the wavelength range to integrate over must be specified.

spot_T The surface brightness of the hotspot as a fraction of the surface brightness of the star, typically
of order ~1000 K for hot Jupiters (unit: kelvin)

28 Chapter 4. Brightness maps



spiderman Documentation, Release 0.2.2

4.4. Two sided planet 29



spiderman Documentation, Release 0.2.2

30 Chapter 4. Brightness maps



spiderman Documentation, Release 0.2.2

4.4. Two sided planet 31



spiderman Documentation, Release 0.2.2

p_T The brightness temperature of the planet that is not in the hotspot. This value will depend strongly
on the physics of heat transport in the planets atmosphere and may be significantly cooler than the
spot (unit: degrees)

Note: Because there is a sharp contrast in flux levels between spot and not spot regions, this brightness model can
have issues with quantisation, which produces unphysical “steps” in the lightcurve. This can be for the time being be
solved by including a numerical integration step in regions with sharp contrasts with the optional paramter “grid_size”

cont

grid_size This model has a sharp boundary, so can have quantization issues. Regions with sharp changes
in brightness are for now integrated numerically instead of analytically, this sets the number of grid
points to use in the integration along each direction, to the total number of additional function calls
will be this value squared. Setting this too high can significantly slow the code down, however if it
is too low fits may be numerically unstable. Use caution. This is a temporary fix and is intended to
be removed in a future version (default: 10)

An example square plot:

32 Chapter 4. Brightness maps



spiderman Documentation, Release 0.2.2

An example four phase plot:

The resulting lightcurves for several parameter values

4.5 Forward model

SPIDERMAN also has the capability to take the results of forward models and project them onto a planet, to quickly
generate a phase curve and secondary eclipse from your favourite model output. SPIDERMAN uses bicubic interpo-
lation to produce smooth and neat looking results from coursely sampled grids.

main parameters:

This model is called as either “direct_b”, in which case the brightness grid is expected to be specified relative to
the brightness of the star, or as “direct_T”, in which case the grid is expected as brightness temperatures and stellar
Temperature and filter details will also be needed. The call parameters are:

grid A list containing the longitude and latitude axis (in degrees) and a 2d array of flux/temperature.
SPIDERMAN has a tool (format_grid) to generate this grid in the correct format.

How to use “format_grid”:

import spiderman as sp
spider_params = sp.ModelParams(brightness_model="direct_b")

### specify orbital parameters ###

spider_params.grid = sp.format_grid(lo,la,flux)

Where lo, la and flux are the longitude, latitude and flux values, which can either be given as 2d arrays or a flattened
list. The dimensions must match.

This method allows you to test any arbitrary brightness distribution, so, for example, here is a map of “SPIDERMAN-
1b”

An example four phase plot:

An example square plot:

And the resulting phasecurveL

4.5. Forward model 33



spiderman Documentation, Release 0.2.2

34 Chapter 4. Brightness maps



spiderman Documentation, Release 0.2.2

4.5. Forward model 35



spiderman Documentation, Release 0.2.2

36 Chapter 4. Brightness maps



spiderman Documentation, Release 0.2.2

4.5. Forward model 37



spiderman Documentation, Release 0.2.2

38 Chapter 4. Brightness maps



CHAPTER 5

Stellar models

In some circumstances, you might want to attempt to directly determine the absolute brightness temperature of the
planet, instead of just the brightness relative to the star. Some physical models may require you to do this, for example
the Zhang and Showman (2017) model.

To do this you need the absolute brightness of the star - don’t worry, spiderman has you covered! There are three
options for stellar models that can be specified when the model parameters are initialized:

where options for the stellar model include “blackbody” (the default), “PHOENIX”, and “path_to_model” (a user-
specified spectrum).

5.1 Blackbody model

At the most basic level, you can assume that the spectrum of the star is simply blackbody with the effective temperature
of the star. Users specify the effective temperature as a model parameter, and the bandpass of the observations must
also be specified like so:

spider_params.T_s = 4520 # The stellar effective temperature in K
spider_params.l1 = 1.1e-6 # The starting wavelength in meters
spider_params.l2 = 1.7e-6 # The ending wavelength in meters

Blackbody stellar models are the default mode for spiderman. Over very wide bandpasses this will be good enough,
but for narrower spectral ranges this could introduce significant errors, particularly for cooler stars with deep molecular
absorption bands.

5.2 PHOENIX model

A more physically realistic option is to use model stellar spectra to determine the stellar flux - spiderman can do
this as well, but it requires downloading an external library of spectra. The path to the library is specified using the
.spidermanrc file, as follows:

39



spiderman Documentation, Release 0.2.2

Note: Currently, the only supported model spectra are the R=10000 PHOENIX models from this page:
ftp://phoenix.astro.physik.uni-goettingen.de/MedResFITS/R10000FITS/PHOENIX-ACES-AGSS-COND-2011_
R10000FITS_Z-0.0.zip

Download and unpack the model spectra, then make a “.spidermanrc” file in your home directory with a line that
points to this model spectra with the keyword PHOENIX_DIR, like this:

PHOENIX_DIR : /path/to/PHOENIX/

As for the blackbody, users specify the wavelength limits for the bandpass and the effective temperature of the star.

spider_params = spiderman.ModelParams(brightness_model = 'zhang', stellar_model =
→˓'PHOENIX')
spider_params.l1 = 1.1e-6 # The starting wavelength in meters
spider_params.l2 = 1.7e-6 # The ending wavelength in meters
spider_params.T_s = 4520 # The stellar effective temperature in K

.. warning:: spiderman currently only interpolates the stellar flux in 1D
→˓(Temperature) and assumes by default that the star is a dwarf with logg 4.5 - 2d
→˓interpolation with logg will be included in a future update

5.3 Custom stellar spectrum

It is also possible to use your own stellar spectrum. To do this, simply specify the path to the spectrum when you
initialize the ModelParams class:

web_p = spiderman.ModelParams(brightness_model = 'zhang', stellar_model = 'path_to_
→˓model')

where the spectrum is saved in a file called ‘path_to_model’. This file must be formatted in two columns, where
column (1) has the wavelength in meters and column (2) has the stellar flux in units of W/m^3/sr.

5.4 Precalculating grids of models

In order to speed up computation, spiderman can automatically generate a grid of the summed stellar flux in the
defined bandpass as a function of stellar effective temperature, when calculating the flux of the star given its effective
temperature spiderman will then use this grid to interpolate on to find the appropriate temperature, to a high level of
precision.

If you a running an MCMC, or another numerical method that requires you to call spiderman many thousands of
times, especially if you are including the stellar temperature as a model parameter, you should precalculate this grid
before begining the model fit and pass it to spiderman to increase the efficiency. This can be done very easily with the
stellar_grid module:

stellar_grid = spiderman.stellar_grid.gen_grid(l1,l2,logg=4.5, stellar_model =
→˓stellar_model)

Where l1 and l2 are the begining and end of the spectral window in meters, logg is the cgs surface gravity of the star,
and stellar_model is the model stellar spectrum (“blackbody”, “PHOENIX”, or “path_to_model”). The stellar_grid
object is then passed to spiderman for every light curve generation instance, e.g.

40 Chapter 5. Stellar models

ftp://phoenix.astro.physik.uni-goettingen.de/MedResFITS/R10000FITS/PHOENIX-ACES-AGSS-COND-2011_R10000FITS_Z-0.0.zip
ftp://phoenix.astro.physik.uni-goettingen.de/MedResFITS/R10000FITS/PHOENIX-ACES-AGSS-COND-2011_R10000FITS_Z-0.0.zip


spiderman Documentation, Release 0.2.2

lc = spider_params.lightcurve(t,stellar_grid=stellar_grid)

If a stellar grid is not provided, spiderman will calculate it internally every time lightcurve is called - this will be
significantly less efficient for long runs.

5.4. Precalculating grids of models 41



spiderman Documentation, Release 0.2.2

42 Chapter 5. Stellar models



CHAPTER 6

Instrument response

When calculating broadband phase curves, either for observations through a filter, or when summing all the data in
a spectroscopic phase curve, the total instrument response may be required, as it weights how important each of the
wavelengths are to the sum. Fortunately, spiderman has an easy way to account for this, simply provide a path to a
“filter file”

spider_params.filter = 'myfilter.txt'

This filter file must be a plain text file that consists of two columns, the wavelength in metres and the corresponding
instument response value (typically a number between 0 and 1) and must be in units of counts per photon. The code
will then convolve the given filter function with the fluxes when calculating physical models with grids of blackbodies
or stellar model spectra. Spiderman will linearly interpolate between the provided wavelength points.

If the filter function is too course, or if it contains a very sharply varying response then the results may not be accurate.
In these cases it may be necessary to modify the “n_bb_seg” parameter in the lightcurve function, for which the default
is 100.

Warning: SPIDERMAN normally calculates ratios in flux density assuming a uniform energy flux response -
a uniform counts / photon response function will be different by a factor of hc / lambda, therefore it is possible
to recover a different result with a uniform response function than you would get by setting the upper and lower
bounds of the integration with l1 and l2.

43



spiderman Documentation, Release 0.2.2

44 Chapter 6. Instrument response



CHAPTER 7

Acknowledgements

spiderman would not have happened without the following people:

• Laura Kreidberg was responsible for the early concept and much of the inspiration of this project.

• Xi Zhang for sharing his analytical solution to temperature distribution on a Hot Jupiter.

• The majority of this code was written during the Kavli Summer Program in Astrophysics 2016, my thanks to
the organisers and participants for a stimulating work environment.

45

https://kspa.soe.ucsc.edu/program


spiderman Documentation, Release 0.2.2

46 Chapter 7. Acknowledgements



CHAPTER 8

Release Notes

47



spiderman Documentation, Release 0.2.2

48 Chapter 8. Release Notes



CHAPTER 9

0.3.1 (2016/08/25)

• Updated API - more object oriented.

• Made fully compatible with BATMAN.

• Added intuitive plotting scripts.

• Made example ipython notebooks.

49



spiderman Documentation, Release 0.2.2

50 Chapter 9. 0.3.1 (2016/08/25)



CHAPTER 10

0.2.2 (2016/08/10)

• First stable release.

51


	Installation
	pip
	From source
	Tests

	Quickstart
	Plotting
	Visualising the planet
	Generating a simple spectrum

	Brightness maps
	Spherical Harmonics
	Zhang and Showman 2017
	Offset hotspot
	Two sided planet
	Forward model

	Stellar models
	Blackbody model
	PHOENIX model
	Custom stellar spectrum
	Precalculating grids of models

	Instrument response
	Acknowledgements
	Release Notes
	0.3.1 (2016/08/25)
	0.2.2 (2016/08/10)

